Abstract

Earlier works on spatial prediction issue often assume that the spatial data are realization of Gaussian random field. However, this assumption is not applicable to the skewed and kurtosis distributed data. The closed skew normal distribution has been used in these circumstances. As another alternative, we apply generalized skew Laplace distributions for defining a skew and heavy tailed random field for Bayesian prediction. Simulation study and a real problem are then applied to evaluate the performance of this model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.