Abstract
A theoretical shot noise model to describe the output of a time-reversal experiment in a multiple-scattering medium is developed. This (non-wave equation based) model describes the following process. An arbitrary waveform is transmitted through a high-order multiple-scattering environment and recorded. The recorded signal is arbitrarily windowed and then time-reversed. The processed signal is retransmitted into the environment and the resulting signal recorded. The temporal and spatial signal and noise of this process is predicted statistically. It is found that the time when the noise is largest depends on the arbitrary windowing and this noise peak can occur at times outside the main lobe. To determine further trends, a common set of parameters is applied to the general result. It is seen that as the duration of the input function increases, the signal-to-noise ratio (SNR) decreases (independent of signal bandwidth). It is also seen that longer persisting impulse responses result in increased main lobe amplitudes and SNR. Assumptions underpinning the generalized shot noise model are compared to an experimental realization of a multiple-scattering medium (a time-reversal chaotic cavity). Results from the model are compared to random number numerical simulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.