Abstract

IntroductionWith the renewed drive towards malaria elimination, there is a need for improved surveillance tools. While time series analysis is an important tool for surveillance, prediction and for measuring interventions’ impact, approximations by commonly used Gaussian methods are prone to inaccuracies when case counts are low. Therefore, statistical methods appropriate for count data are required, especially during “consolidation” and “pre-elimination” phases.MethodsGeneralized autoregressive moving average (GARMA) models were extended to generalized seasonal autoregressive integrated moving average (GSARIMA) models for parsimonious observation-driven modelling of non Gaussian, non stationary and/or seasonal time series of count data. The models were applied to monthly malaria case time series in a district in Sri Lanka, where malaria has decreased dramatically in recent years.ResultsThe malaria series showed long-term changes in the mean, unstable variance and seasonality. After fitting negative-binomial Bayesian models, both a GSARIMA and a GARIMA deterministic seasonality model were selected based on different criteria. Posterior predictive distributions indicated that negative-binomial models provided better predictions than Gaussian models, especially when counts were low. The G(S)ARIMA models were able to capture the autocorrelation in the series.ConclusionsG(S)ARIMA models may be particularly useful in the drive towards malaria elimination, since episode count series are often seasonal and non-stationary, especially when control is increased. Although building and fitting GSARIMA models is laborious, they may provide more realistic prediction distributions than do Gaussian methods and may be more suitable when counts are low.

Highlights

  • With the renewed drive towards malaria elimination, there is a need for improved surveillance tools

  • For the purpose of Gaussian seasonal autoregressive integrated moving average (SARIMA) model identification, a Box-Cox transformation was identified by fitting to the malaria case count time series

  • generalized seasonal autoregressive integrated moving average (GSARIMA) and generalized autoregressive integrated moving average (GARIMA) models are an extension of the class of Generalized autoregressive moving average (GARMA) models [16], and are suitable for parsimonious modelling of non-stationary seasonal time series of count data with negative binomial conditional distribution

Read more

Summary

Introduction

With the renewed drive towards malaria elimination, there is a need for improved surveillance tools. While time series analysis is an important tool for surveillance, prediction and for measuring interventions’ impact, approximations by commonly used Gaussian methods are prone to inaccuracies when case counts are low. The Anti Malaria Campaign Directorate of the Ministry of Health in Sri Lanka has tested a malaria forecasting system that uses multiplicative seasonal autoregressive integrated moving average (SARIMA) models, which assume that logarithmically transformed monthly malaria case count data are approximately Gaussian distributed. Such an approach is widely used in predictive modelling of infectious diseases [4,6,7]. Sri Lanka entered the pre-elimination phase in 2007 and progressed to the elimination phase in 2011 [11]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.