Abstract

The present paper describes a generalized scaling-up methodology applied to Polymer Electrolyte Membrane Fuel Cells. The use of proper scaling-up algorithms can reduce testing costs within fuel cell manufacturing process by evaluating full stack performance (i.e., impedance behavior) from a single cell/short stack measurement. The algorithm here described relies on a former approach developed by the authors and consists in a generalized methodology combining information measured on single cell and simple physical models (e.g., charge transfer resistance expressed through Tafel equation). A robust technique for the identification of cell reference operational state, such as membrane hydration, from non-scaled data is also introduced. Connection between charge transfer resistance and limiting current is established through diffusion losses modelling. Single cell internal states are estimated by means of inverse models function of numerical intercepts of measured cell spectrum. Stack impedance estimation is then performed through stack internal states assumptions. To prove the consistency and robustness of the proposed methodology, literature data used to design and test the former algorithm version are here considered for algorithm testing and verification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.