Abstract

Generalized rigid and generalized affine registration and interpolation obtained by finite displacements and by optical flow are here developed variationally and numerically as well as with respect to a geometric multigrid solution process. For high order optimality systems under natural boundary conditions, it is shown that the convergence criteria of Hackbusch (Iterative Solution of Large Sparse Systems of Equations. Springer, Berlin, 1993) are met. Specifically, the Galerkin formalism is used together with a multi-colored ordering of unknowns to permit vectorization of a symmetric successive over-relaxation on image processing systems. The geometric multigrid procedure is situated as an inner iteration within an outer Newton or lagged diffusivity iteration, which in turn is embedded within a pyramidal scheme that initializes each outer iteration from predictions obtained on coarser levels. Differences between results obtainable by finite displacements and by optical flows are elucidated. Specifically, independence of image order can be shown for optical flow but in general not for finite displacements. Also, while autonomous optical flows are used in practice, it is shown explicitly that finite displacements generate a broader class of registrations. This work is motivated by applications in histological reconstruction and in dynamic medical imaging, and results are shown for such realistic examples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call