Abstract

This paper illustrates how the application of integer programming to logic can reveal parallels between logic and mathematics and lead to new algorithms for inference in knowledge-based systems. If logical clauses (stating that at least one of a set of literals is true) are written as inequalities, then the resolvent of two clauses corresponds to a certain cutting plane in integer programming. By properly enlarging the class of cutting planes to cover clauses that state that at least a specified number of literals are true, we obtain a generalization of resolution that involves both cancellation-type and circulant-type sums. We show its completeness by proving that it generates all prime implications, generalizing an early result by Quine. This leads to a cutting-plane algorithm as well as a generalized resolution algorithm for checking whether a set of propositions, perhaps representing a knowledge base, logically implies a given proposition. The paper is intended to be readable by persons with either an operations research or an artificial intelligence background.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.