Abstract

We examine the nonperturbative effect of maximum momentum on the relativistic wave equations. In momentum representation, we obtain the exact eigen-energies and wave functions of one-dimensional Klein–Gordon and Dirac equation with linear confining potentials, and the Dirac oscillator. Bound state solutions are only possible when the strength of scalar potential is stronger than vector potential. The energy spectrum of the systems studied is bounded from above, whereby classical characteristics are observed in the uncertainties of position and momentum operators. Also, there is a truncation in the maximum number of bound states that is allowed. Some of these quantum-gravitational features may have future applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call