Abstract
The majority of the artificial neural network applications in water resources involve the employment of feed forward back propagation method (FFBP). In this study another ANN algorithm, generalized regression neural network, GRNN, was used in river suspended sediment estimation. Generalized regression neural network does not require an iterative training procedure as in back propagation method. The GRNN simulations do not face the frequently encountered local minima problem in FFBP applications and GRNN does not generate estimates physically not plausible. The neural networks are trained using daily river flow and suspended sediment data belonging to Juniata Catchment in USA. The suspended sediment estimations provided by two ANN algorithms are compared with conventional sediment rating curve and multi linear regression method results. The mean squared error and the determination coefficient are used as comparison criteria. Also the estimated and observed sediment sums are examined in addition to two previously mentioned performance criteria. The ANN estimations are found significantly superior to conventional method results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.