Abstract
AbstractWe investigate a class of Lie algebras which we call generalized reductive Lie algebras. These are generalizations of semi-simple, reductive, and affine Kac–Moody Lie algebras. A generalized reductive Lie algebra which has an irreducible root system is said to be irreducible and we note that this class of algebras has been under intensive investigation in recent years. They have also been called extended affine Lie algebras. The larger class of generalized reductive Lie algebras has not been so intensively investigated. We study themin this paper and note that one way they arise is as fixed point subalgebras of finite order automorphisms. We show that the core modulo the center of a generalized reductive Lie algebra is a direct sum of centerless Lie tori. Therefore one can use the results known about the classification of centerless Lie tori to classify the cores modulo centers of generalized reductive Lie algebras.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.