Abstract
In this paper, active backstepping design technique is applied to achieve reduced-order hybrid combination synchronization and reduced-order projective hybrid combination synchronization of three chaotic systems consisting of: (i) two third-order chaotic Josephson junctions as drives and one second-order chaotic Josephson junction as response system; (ii) one third-order chaotic Josephson junction as the drive and two second-order chaotic Josephson junctions as the slaves. Numerical simulations are performed to verify the feasibility and effectiveness of the analytical results. Reduced-order combination synchronization has more valuable practical applications to information processing in physical, biological, and social systems than the normal one master system and one slave system synchronization scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.