Abstract

Through the Rayleigh quotient (the ratio of intensity responses of a filter to different objects) we may generalize a great number of metrics used in optical pattern recognition. The Rayleigh quotient has been optimized in linear digital systems under the constraint of unit-energy filters. In optical pattern recognition at least two considerations violate the conditions under which the quotient has been digitally optimized: the noise background of the measurement invokes nonlinearity, and filters are constrained other than to unit energy. I show a solution that optimizes the ratio of biased measurements, subject to constraining filter values to arbitrary subsets of the complex plane. Previous solutions are discussed as special cases. A metric’s numerator and denominator may now both include the objects’ phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.