Abstract

The scattering patterns near the primary rainbow of oblate drops are simulated by extending the vectorial complex ray model (VCRM) [Opt. Lett.36, 370 (2011)OPLEDP0146-959210.1364/OL.36.000370] to three-dimensional (3D) calculations. With the curvature of a wavefront as an intrinsic property of a ray, this advanced ray model permits, in principle, to predict the amplitudes and phases of all emergent rays with a rigorous algebraic formalism. This Letter reports a breakthrough of VCRM for 3D scattering with a line-by-line triangulation interpolation algorithm allowing to calculate the total complex amplitude of a scattered field. This makes possible to simulate not only the skeleton (geometrical rainbow angles, hyperbolic-umbilic caustics), but also the coarse (Airy bows, lattice) and fine (ripple fringes) structures of the generalized rainbow patterns (GRPs) of oblate drops. The simulated results are found qualitatively and quantitatively in good agreement with experimental scattering patterns for drops of different aspect ratios. The physical interpretation of the GRPs is also given. This work opens up prominent perspectives for simulating and understanding the 3D scattering of large particles of any shape with a smooth surface by VCRM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.