Abstract

This note considers the generalized quadratic stability problem for continuous-time singular system with nonlinear perturbation. The perturbation is a function of time and system state and satisfies a Lipschitz constraint. In this work, a sufficient condition for the existence and uniqueness of solution to the singular system is firstly presented. Then by using S-procedure and matrix inequality approach, a necessary and sufficient condition is presented in terms of linear matrix inequality, under which the maximal perturbation bound is obtained to guarantee the generalized quadratic stability of the system. That is, the system remains exponential stable and the nominal system is regular and impulse free. Furthermore, robust stability for nonsingular systems with perturbation can be obtained as a special case. Finally, the effectiveness of the developed approach for both singular and nonsingular systems is illustrated by numerical examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.