Abstract
All known finite generalized quadrangles that admit an automorphism group acting sharply transitively on their point set arise by Payne derivation from thick elation generalized quadrangles of order s with a regular point. In these examples only two groups occur: elementary abelian groups of even order and odd order Heisenberg groups of dimension 3. In [2] the authors determined all generalized quadrangles admitting an abelian group with a sharply transitive point action. Here, we classify thick finite generalized quadrangles admitting an odd order Heisenberg group of dimension 3 acting sharply transitively on the points. In fact our more general result comes close to a complete solution of classifying odd order Singer p-groups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.