Abstract

Different from conventional spaceborne or airborne synthetic aperture radar (SAR) with optimal aperture length, an imaging radar with highly suboptimal aperture length acquires the data in short bursts by a geometry spreading over a large range. A polarlike or pseudopolar format grid is introduced to sample data close to the resolution, which presents the design of a separable kernel for efficient FFT implementation. The proposed imaging algorithm formulates the reflectivity image of the target scene as an interpolation-free double image series expansion with two usual approximation-induced phase error terms being taken into account, whereby more generalized application scenarios with high frequency, large bandwidth or larger aperture length for imaging a target scene located within either the far-field or the near-field of the radar aperture are processable with high accuracy. In addition, convergence acceleration methods in computational mathematics are introduced to accelerate the convergence of the image series expansion, so as to make the algorithm more efficient. The proposed algorithm has been validated both qualitatively and quantitatively with an extensive collection of numerical simulations and field measurements of ground-based SAR (GB-SAR) data set.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.