Abstract

Ha (Ref. 1) recently introduced a generalized proximal point algorithm for solving a generalized equation. In this note, we present a generalized proximal point algorithm for convex optimization problems based on Ha's work. The idea behind this algorithm is that, instead of adding a quadratic term to all the variables, we add a quadratic term to a subset of the variables. We extend the criteria for approximate solutions given by Rockafellar (Ref. 2) and Auslender (Ref. 3) and present convergence results. Finally, we show how this algorithm can be applied to solve block-angular linear and quadratic programming problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.