Abstract
This paper proposes a generalized probabilistic framework for optimum inspection and maintenance planning of deteriorating structures. The proposed framework covers (1) the damage occurrence and propagation and service life prediction under uncertainty, (2) the relation between degree of damage and probability of damage detection of an inspection method, and (3) the effects of inspection and maintenance on service life and life-cycle cost. Optimum inspection and maintenance types and times are obtained through an optimization formulation by maximizing the expected service life and minimizing the expected total life-cycle cost consisting of inspection and maintenance costs. The service life, life-cycle cost, and maintenance delay, along with inspection and maintenance actions, are formulated using a decision tree model. The selection of the appropriate maintenance type depends on the degree of damage. The proposed framework is general and can be applied to any types of deteriorating structures or materials. Applications of the proposed framework may include, but are not limited to, bridges, buildings, aircrafts, and naval ships.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.