Abstract

This article presents experimental results of a transonic wind-tunnel test that demonstrates the use of generalized predictive control for flutter suppression for a subsonic wind-tunnel wing model. The generalized predictive control algorithm is based on the minimization of a suitable cost function over finite costing and control horizons. The cost function minimizes not only the sum of the mean square output of the plant predictions, but also the weighted square rate of change of the control input with its input constraints. An additional term was added to the cost function to compensate for dynamics of the wing model that cause it to be invariant to low input frequencies. This characteristic results in a control surface that drifts within the specified input constraints. The augmentation to the cost function that penalizes this low frequency drift is derived and demonstrated. The initial validation of the controller uses a linear plant predictor model for the computation of the control inputs. Simulation results of the closed-loop system that were used to determine nominal ranges for the tuning parameters are presented. The generalized predictive controller based on the linear predictor model successfully suppressed the flutter for all testable Mach numbers and dynamic pressures in the transonic region in both simulation and wind- tunnel testing. The results confirm that the generalized predictive controller is robust to modeling errors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call