Abstract
The generalized Poisson distribution has been found useful in fitting over-dispersed as well as under-dispersed count data. Since a number of models and methods have been proposed for the regression analysis of count data either with under-dispersion or with over-dispersion, we define and study a generalized Poisson regression (GPR) model which is useful in predicting a response variable affected by one or more covariates. This regression model is suitable for both types of dispersions. The methods of maximum likelihood and moments are given for the estimation of parameters. Approximate tests for the adequacy of the model are considered. Asymptotic tests are given for the significance of regression parameters. The GPR model has been applied to four observed data sets to which other regression models were applied earlier.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.