Abstract

Let Y be a smooth projective algebraic surface over ℂ, and T(Y) the kernel of the Albanese map CH0(Y)deg0 Alb(Y). It was first proven by D. Mumford that if the genus Pg(Y) > 0, then T(Y) is 'infinite dimensional'. One would like to have a better idea about the structure of T(Y). For example, if Y is dominated by a product of curves E1 × E2, such as an abelian or a Kummer surface, then one can easily construct an abelian variety B and a surjective 'regular' homomorphism B⊗z2 T(Y). A similar story holds for the case where Y is the Fano surface of lines on a smooth cubic hypersurface in P4. This implies a sort of boundedness result for T(Y). It is natural to ask if this is the case for any smooth projective algebraic surface Y ? Partial results have been attained in this direction by the author [Illinois. J. Math. 35 (2), 1991]. In this paper, we show that the answer to this question is in general no. Furthermore, we generalize this question to the case of the Chow group of k—cycles on any projective algebraic manifold X, and arrive at, from a conjectural standpoint, necessary and sufficient cohomological conditions on X for which the question can be answered affirmatively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.