Abstract

Picture fuzzy set (PFS), which is a generalization of traditional fuzzy set and intuitionistic fuzzy set, shows great promises of better adaptation to many practical problems in pattern recognition, artificial life, robotic, expert and knowledge-based systems than existing types of fuzzy sets. An emerging research trend in PFS is development of clustering algorithms which can exploit and investigate hidden knowledge from a mass of datasets. Distance measure is one of the most important tools in clustering that determine the degree of relationship between two objects. In this paper, we propose a generalized picture distance measure and integrate it to a novel hierarchical picture fuzzy clustering method called Hierarchical Picture Clustering (HPC). Experimental results show that the clustering quality of the proposed algorithm is better than those of the relevant ones.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.