Abstract
The Pickands estimator for the extreme value index is generalized in a way that includes all of its previously known variants. A detailed study of the asymptotic behavior of the estimators in the family serves to determine its optimally performing members. These are given by simple, explicit formulas, have the same asymptotic variance as the maximum likelihood estimator in the generalized Pareto model, and are robust to departures from the limiting generalized Pareto model in case the convergence of the excess distribution to its limit is slow. A simulation study involving a wide range of distributions shows the new estimators to compare favorably with the maximum likelihood estimator.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.