Abstract

In this paper we introduce the notion of generalized physical and SRB measures. These measures naturally generalize classical physical and SRB measures to measures which are supported on invariant sets that are not necessarily attractors. We then perform a detailed case study of these measures for hyperbolic Henon maps. For this class of systems we are able to develop a complete theory about the existence, uniqueness, finiteness, and properties of these natural measures. Moreover, we derive a classification for the existence of a measure of full dimension. We also consider general hyperbolic surface diffeomorphisms and discuss possible extensions of, as well as the differences to, the results for Henon maps. Finally, we study the regular dependence of the dimension of the generalized physical/SRB measure on the diffeomorphism. For the proofs we apply various techniques from smooth ergodic theory including the thermodynamic formalism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.