Abstract

This paper is part of a line of research devoted to developing a compositional and geometric theory of Group Equivariant Non-Expansive Operators (GENEOs) for Geometric Deep Learning. It has two objectives. The first objective is to generalize the notions of permutants and permutant measures, originally defined for the identity of a single “perception pair”, to a map between two such pairs. The second and main objective is to extend the application domain of the whole theory, which arose in the set-theoretical and topological environments, to graphs. This is performed using classical methods of mathematical definitions and arguments. The theoretical outcome is that, both in the case of vertex-weighted and edge-weighted graphs, a coherent theory is developed. Several simple examples show what may be hoped from GENEOs and permutants in graph theory and how they can be built. Rather than being a competitor to other methods in Geometric Deep Learning, this theory is proposed as an approach that can be integrated with such methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call