Abstract

A generalized pencil-of-function (GPOF) method is developed for extracting the poles of an electromagnetic system from its transient response. The GPOF method needs the solution of a generalized eigenvalue problem to find the poles. Subspace decomposition is also used to optimize the performance of the GPOF method. The GPOF method has advantages over the Prony method in both computation and noise sensitivity, and approaches the Cramer-Rao bound when the signal-to-noise ratio (SNR) is above threshold. An application of the GPOF method to a thin-wire target is presented.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.