Abstract

Opportunistic links are emerging as a novel technology for state-of-the-art wireless networks, such as cognitive radio networks, energy-harvesting networks, and low-latency vehicular networks. To increase the reliability of these networks, path-permutation codes (PPCs) were advocated in [1] . These codes are based on a virtual multiple-input multiple-output (MIMO) model on the session/network layer, and have been tailored for increased reliability of opportunistic links. By exploiting multipath–multihop routes, PPCs access one relay path at a time while repeatedly transmitting the same QAM symbol. In this paper, we introduce a generalized PPC scheme which simultaneously accesses multiple relay paths and comprises multiple QAM symbols in the packet. Phase rotations are also introduced in the PPC codewords for additional performance improvement. Numerical simulation results validate our analyses and demonstrate the superior performance of this novel coding scheme, i.e., better error rate performance, higher throughput, and stronger robustness to transmission outages.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.