Abstract
Abstract In this paper we introduce generalized or vector-valued Orlicz-Lorentz sequence spaces l p,q,M(X) on Banach space X with the help of an Orlicz function M and for different positive indices p and q. We study their structural properties and investigate cross and topological duals of these spaces. Moreover these spaces are generalizations of vector-valued Orlicz sequence spaces l M(X) for p = q and also Lorentz sequence spaces for M(x) = x q for q ≥ 1. Lastly we prove that the operator ideals defined with the help of scalar valued sequence spaces l p,q,M and additive s-numbers are quasi-Banach operator ideals for p < q and Banach operator ideals for p ≥ q. The results of this paper are more general than the work of earlier mathematicians, say A. Pietsch, M. Kato, L. R. Acharya, etc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.