Abstract
This paper investigates the reconstruction of elastic Green's function from the cross-correlation of waves excited by random noise in the context of scattering theory. Using a general operator equation-the resolvent formula-Green's function reconstruction is established when the noise sources satisfy an equipartition condition. In an inhomogeneous medium, the operator formalism leads to generalized forms of optical theorem involving the off-shell T-matrix of elastic waves, which describes scattering in the near-field. The role of temporal absorption in the formulation of the theorem is discussed. Previously established symmetry and reciprocity relations involving the on-shell T-matrix are recovered in the usual far-field and infinitesimal absorption limits. The theory is applied to a point scattering model for elastic waves. The T-matrix of the point scatterer incorporating all recurrent scattering loops is obtained by a regularization procedure. The physical significance of the point scatterer is discussed. In particular this model satisfies the off-shell version of the generalized optical theorem. The link between equipartition and Green's function reconstruction in a scattering medium is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.