Abstract

Light-driven matter can exhibit qualitatively distinct electronic and optical properties from those observed at equilibrium. We introduce generalized sum rules for the optical properties of light-driven molecules. Both classical and quantum light are considered. For classical light, the Floquet sum rules show that the sum of all Fourier components, indexed by n = -∞ to ∞, of the time-dependent dipole matrix elements between Floquet modes weighted by the corresponding quasienergy difference in the first Floquet Brillouin zone plus n driving frequency is a constant. Surprisingly, it is impossible to alter the energy exchange rate between matter and a perturbative external probe laser by a strong driving, even though the spectra can differ significantly from the bare ones. These developments provide guidance for the control of effective optical properties of matter by light fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.