Abstract
A variant of the generalized Ohm’s law that is suited for a weakly-ionized multicomponent plasma in a magnetic field is here derived. The latter takes into consideration the current due to the non-neutrality of the plasma, the current due to the Hall effect, and the currents due to the ion slip associated with each type of ion. An equation for the electric field potential applicable to a non-neutral multicomponent plasma in the presence of a magnetic field is then presented. Despite some similarities between the potential equation and the Poisson equation, it is argued that the discretization of the potential equation cannot be accomplished in the same manner by using only central differences. It is here proven (and subsequently verified through a test case) that when the plasma exhibits conjunctly a high Hall parameter and a high electrical conductivity gradient, the centered stencils introduce spurious oscillations which can lead to severe numerical error. A novel discretization of the potential equation consisting of a blend of central and upwind differences is then presented. The proposed scheme is consistently monotonic for any value of the Hall parameter and is second-order accurate except in the vicinity of discontinuities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Computational Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.