Abstract
Feedforward neural networks such as multilayer perceptrons (MLP) and recurrent neural networks are widely used for pattern classification, nonlinear function approximation, density estimation and time series prediction. A large number of neurons are usually required to perform these tasks accurately, which makes the MLPs less attractive for computational implementations on resource constrained hardware platforms. This paper highlights the benefits of feedforward and recurrent forms of a compact neural architecture called generalized neuron (GN). This paper demonstrates that GN and recurrent GN (RGN) can perform good classification, nonlinear function approximation, density estimation and chaotic time series prediction. Due to two aggregation functions and two activation functions, GN exhibits resilience to the nonlinearities of complex problems. Particle swarm optimization (PSO) is proposed as the training algorithm for GN and RGN. Due to a small number of trainable parameters, GN and RGN require less memory and computational resources. Thus, these structures are attractive choices for fast implementations on resource constrained hardware platforms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.