Abstract

Finding an optimal subset of nodes in a network that is able to efficiently disrupt the functioning of a corrupt or criminal organization or contain an epidemic or the spread of misinformation is a highly relevant problem of network science. In this paper, we address the generalized network-dismantling problem, which aims at finding a set of nodes whose removal from the network results in the fragmentation of the network into subcritical network components at minimal overall cost. Compared with previous formulations, we allow the costs of node removals to take arbitrary nonnegative real values, which may depend on topological properties such as node centrality or on nontopological features such as the price or protection level of a node. Interestingly, we show that nonunit costs imply a significantly different dismantling strategy. To solve this optimization problem, we propose a method which is based on the spectral properties of a node-weighted Laplacian operator and combine it with a fine-tuning mechanism related to the weighted vertex cover problem. The proposed method is applicable to large-scale networks with millions of nodes. It outperforms current state-of-the-art methods and opens more directions for understanding the vulnerability and robustness of complex systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.