Abstract

Building upon the results in [M. Hintermuller and T. Surowiec, Pac. J. Optim., 9 (2013), pp. 251--273], a class of noncooperative Nash equilibrium problems is presented, in which the feasible set of each player is perturbed by the decisions of their competitors via a convex constraint. In addition, for every vector of decisions, a common “state” variable is given by the solution of an affine linear equation. The resulting problem is therefore a generalized Nash equilibrium problem (GNEP). The existence of an equilibrium for this problem is demonstrated, and first-order optimality conditions are derived under a constraint qualification. An approximation scheme is proposed, which involves the solution of a parameter-dependent sequence of standard Nash equilibrium problems. An associated path-following strategy based on the Nikaido--Isoda function is then proposed. Function-space-based numerics for parabolic GNEPs and a spot-market model are developed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.