Abstract

The generalized rigid registration problem in high-dimensional Euclidean spaces is studied. The loss function is minimized with an equivalent error formulation by the Cayley formula. The closed-form linear least-square solution to such a problem is derived which generates the registration covariances, i.e., uncertainty information of rotation and translation, providing quite accurate probabilistic descriptions. Simulation results indicate the correctness of the proposed method and also present its efficiency on computation-time consumption, compared with previous algorithms using singular value decomposition (SVD) and linear matrix inequality (LMI). The proposed scheme is then applied to an interpolation problem on the special Euclidean group SE(n) with covariance-preserving functionality. Finally, experiments on covariance-aided Lidar mapping show practical superiority in robotic navigation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.