Abstract

Based on the porous media theory and Timoshenko beam theory, properties of dynamic responses in fluid-solid coupled incompressible saturated poroelastic Timoshenko beam are investigated by generalized multi-symplectic method. Dynamic response equation set of incompressible saturated poroelastic Timoshenko beam is presented at first. Then a first order generalized multi-symplectic form of this dynamic response equation set is constructed, and errors of generalized multi-symplectic conservation law, generalized multi-symplectic local momentum and generalized multi-symplectic local energy are also derived. A Preissmann Box generalized multi-symplectic scheme of the dynamic response equation set is presented, the discrete errors of generalized multi-symplectic conservation law, generalized multi-symplectic local momentum conservation law and generalized multi-symplectic local energy conservation law are also obtained. In view of the dynamic responses of incompressible saturated poroelastic Timoshenko cantilever beam with two ends permeable and free end subjected to the step load, the transverse dynamic response process of the solid skeleton is simulated numerically, the evolution processes of solid effective stress and the equivalent moment of the pore fluid pressure over time are also presented numerically. The effects of fluid-solid coupled interaction parameter and slenderness ratio of the beam on the solid dynamic response process are revealed, as well as the effects on all generalized multi-symplectic numerical errors are checked simultaneously. From results obtained, the processes for solid deflection, solid effective stress and the equivalent moment of the pore fluid pressure approaching to their steady response values are all shortened with increasing of fluid-solid coupled interaction parameter, while the response process of solid deflection and the pore fluid equivalent moment are lengthened with increasing of slenderness ratio of the beam. Moreover, the steady value of solid deflection is much closer to the static deflection value of classic single phase elastic Euler-Bernoulli beam with increasing of the slenderness ratio. As time goes on, the solid skeleton of the beam will support all outside load, so equivalent moment of the pore fluid pressure becomes zero at last. In addition, it is presented all generalized multi-symplectic numerical errors decrease with the decreasing of parameters representing the dissipation effect for the dynamic system.

Highlights

  • 摘 要:采用广义多辛数值算法研究不可压饱和多孔弹性 Timoshenko 梁的流固耦合动力响应特性, 构造梁动力响应方程的广义多辛形式,给出其 Preissmann Box 离散格式及各种广义多辛局部守恒律 误差离散格式。 数值模拟两端可渗透多孔弹性 Timoshenko 悬臂梁的动力响应过程,并分析其动力响 应特性。 发现两相耦合作用系数增大,梁各横截面的孔隙流体压力等效力偶、固相挠度和固相有效应 力达到稳态值所需的时间缩短;梁长细比增大,所需时间加长,且挠度稳态值越接近相应经典单相弹 性 Euler⁃Bernoulli 梁的静挠度值;随时间的推移,梁固相骨架承担所有外荷载,孔隙流体压力等效力偶 最终将为零。 表征耗散效应的参数取值减小,各种广义多辛数值误差的数量级也减小。

  • 多孔介质是存在于自然界的重要介质之一,在 各类工程实际中均有广泛的应用。 在土木工程领 域,大量多孔介质结构以承担横向荷载为主,其动力 响应以横向弯曲变形为主,例如混凝土梁、木质结构 梁等。 近些年来,学术界已对多孔介质梁的各类动 力响应问题做了大量的研究[1⁃4] 。 Li 等[1] 通过变分 原理,给出流体饱和多孔弹性梁轴向扩散的混合有 限元格式,并数值分析其位移和孔隙压力随时间的 响应。 Wang 等[3] 给出了饱和多孔弹性梁纯弯曲变 形的三维解析解。 周凤玺等[4] 基于不可压多孔介 质理论和弹性地基模型理论,利用 Fourier 级数展开 法研究了饱和多孔弹性梁的自由振动特性。

  • 类超导体混合态的电磁特性和拟 Degasperis⁃Procesi 方程的非线性特性。 对于大量存在耗散效应的无限 维非保守哈密顿动力学系统的求解问题,近年来,广 义多辛算法应运而生,其相关研究成果已经被广泛 报道[15⁃18] 。 胡伟鹏[16] 基于多辛积分理论,将多辛数 学方法推广到可应用于无限维非保守动力学系统的 广义多辛数学方法。 张宇等[18] 对弦的有阻尼受迫 振动过程作了广义多辛数值算法研究。

Read more

Summary

Introduction

西北工业大学学报 Journal of Northwestern Polytechnical University https: / / doi.org / 10.1051 / jnwpu / 20203840774 刘雪梅1,2, 邓子辰1 (1.西北工业大学 力学与土木建筑学院, 陕西 西安 710072; 2.长安大学 理学院, 陕西 西安 710064) 摘 要:采用广义多辛数值算法研究不可压饱和多孔弹性 Timoshenko 梁的流固耦合动力响应特性, 构造梁动力响应方程的广义多辛形式,给出其 Preissmann Box 离散格式及各种广义多辛局部守恒律 误差离散格式。 数值模拟两端可渗透多孔弹性 Timoshenko 悬臂梁的动力响应过程,并分析其动力响 应特性。 发现两相耦合作用系数增大,梁各横截面的孔隙流体压力等效力偶、固相挠度和固相有效应 力达到稳态值所需的时间缩短;梁长细比增大,所需时间加长,且挠度稳态值越接近相应经典单相弹 性 Euler⁃Bernoulli 梁的静挠度值;随时间的推移,梁固相骨架承担所有外荷载,孔隙流体压力等效力偶 最终将为零。 表征耗散效应的参数取值减小,各种广义多辛数值误差的数量级也减小。 多孔介质是存在于自然界的重要介质之一,在 各类工程实际中均有广泛的应用。 在土木工程领 域,大量多孔介质结构以承担横向荷载为主,其动力 响应以横向弯曲变形为主,例如混凝土梁、木质结构 梁等。 近些年来,学术界已对多孔介质梁的各类动 力响应问题做了大量的研究[1⁃4] 。 Li 等[1] 通过变分 原理,给出流体饱和多孔弹性梁轴向扩散的混合有 限元格式,并数值分析其位移和孔隙压力随时间的 响应。 Wang 等[3] 给出了饱和多孔弹性梁纯弯曲变 形的三维解析解。 周凤玺等[4] 基于不可压多孔介 质理论和弹性地基模型理论,利用 Fourier 级数展开 法研究了饱和多孔弹性梁的自由振动特性。

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.