Abstract
In this paper, we consider local multiscale model reduction for problems with multiple scales in space and time. We developed our approaches within the framework of the Generalized Multiscale Finite Element Method (GMsFEM) using space–time coarse cells. The main idea of GMsFEM is to construct a local snapshot space and a local spectral decomposition in the snapshot space. Previous research in developing multiscale spaces within GMsFEM focused on constructing multiscale spaces and relevant ingredients in space only. In this paper, our main objective is to develop a multiscale model reduction framework within GMsFEM that uses space–time coarse cells. We construct space–time snapshot and offline spaces. We compute these snapshot solutions by solving local problems. A complete snapshot space will use all possible boundary conditions; however, this can be very expensive. We propose using randomized boundary conditions and oversampling (cf. Calo et al., 2016). We construct the local spectral decomposition based on our analysis, as presented in the paper. We present numerical results to confirm our theoretical findings and to show that using our proposed approaches, we can obtain an accurate solution with low dimensional coarse spaces. We discuss using online basis functions constructed in the online stage and using the residual information. Online basis functions use global information via the residual and provide fast convergence to the exact solution provided a sufficient number of offline basis functions. We present numerical studies for our proposed online procedures. We remark that the proposed method is a significant extension compared to existing methods, which use coarse cells in space only because of (1) the parabolic nature of cell solutions, (2) extra degrees of freedom associated with space–time cells, and (3) local boundary conditions in space–time cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.