Abstract
In this paper, we propose a multiscale method for the Darcy–Forchheimer model in highly heterogeneous porous media. The problem is solved in the framework of generalized multiscale finite element method (GMsFEM) combined with a multipoint flux mixed finite element (MFMFE) method. We consider a MFMFE method that utilizes the lowest order Brezzi–Douglas–Marini (BDM1) mixed finite element spaces for the approximation of velocity and pressure. The symmetric trapezoidal quadrature rule is employed for the integral of bilinear forms related to velocity variables so that the local velocity elimination is allowed which leads to a cell-centered system for pressure. We construct the multiscale space for pressure and solve the problem on the coarse grid following the GMsFEM framework. In the offline stage, we construct local snapshot spaces and perform spectral decompositions to get the offline space with a smaller dimension. In the online stage, we use Newton iterative algorithm to solve the nonlinear problem and obtain the offline solution, which reduces the number of iterations greatly compared to the standard Picard iterative algorithm. Based on the offline basis functions and the offline solution, we calculate online basis functions on each coarse element to enrich the multiscale space iteratively. The online basis functions contain the important global information and are effective to reduce relative errors substantially. Numerical examples are provided to highlight the performance of the proposed multiscale method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.