Abstract
We study asharpinterface model for phase transitions which incorporates the interaction of the phase boundaries with the walls of a container Ω. In this model, the interfaces move by their mean curvature and are normal to δΩ. We first establish local-in-time existence and uniqueness of smooth solutions for the mean curvature equation with a normal contact angle condition. We then discuss global solutions by interpreting the equation and the boundary condition in a weak (viscosity) sense. Finally, we investigate the relation of the aforementioned model with atransitionlayer model. We prove that if Ω isconvex, the transition-layer solutions converge to the sharp-interface solutions as the thickness of the layer tends to zero. We conclude with a discussion of the difficulties that arise in establishing this result in nonconvex domains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.