Abstract

The goal of this paper is to construct infinite dimensional Lie algebras using infinite product identities, and to use these Lie algebras to reduce the generalized moonshine conjecture to a pair of hypotheses about group actions on vertex algebras and Lie algebras. The Lie algebras that we construct conjecturally appear in an orbifold conformal field theory with symmetries given by the monster simple group. We introduce vector-valued modular functions attached to families of modular functions of different levels, and we prove infinite product identities for a distinguished class of automorphic functions on a product of two half-planes. We recast this result using the Borcherds-Harvey-Moore singular theta lift, and show that the vector-valued functions attached to completely replicable modular functions with integer coefficients lift to automorphic functions with infinite product expansions at all cusps. For each element of the monster simple group, we construct an infinite dimensional Lie algebra, such that its denominator formula is an infinite product expansion of the automorphic function arising from that element's McKay-Thompson series. These Lie algebras have the unusual property that their simple roots and all root multiplicities are known. We show that under certain hypotheses, characters of groups acting on these Lie algebras form functions on the upper half plane that are either constant or invariant under a genus zero congruence group.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.