Abstract

The generalized molecular orbital (GMO) concept is extended to a higher order method, which begins with a pair-excited multiconfiguration self-consistent field (PEMCSCF) for the orbital optimization and is followed by a multireference configuration interaction calculation. Here, this method is referred to as GMO2. The method has the advantage of being variational, of handling large numbers of active electrons, and of only needing the user to specify the number of active electrons and orbitals without specifying a dominant MO or VB configuration. In this paper, we briefly review the PEMCSCF theory, describe in more detail a new and more efficient optimization procedure, and propose determining the energy with configuration interaction (CI) at the single, double, triple, and quadruple-excitation levels (SDTQ) as a replacement for the full CI, which is needed in a complete active space (CAS) method. Several examples of the application of the method are investigated: methane, tetrahydrogen, benzene, dinitrog...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.