Abstract

Recent models for laminar friction and heat transfer in non-circular ducts and channels are reviewed. Models for both hydrodynamically and thermally developing flows are presented. These models are based on the superposition of asymptotic characteristics for short and long ducts. The non-dimensional mean wall shear stress (friction factor-Reynolds number product) and non-dimensional heat transfer coefficient (Nusselt number) are shown to be only functions of the dimensionless hydrodynamic or thermal duct length, respectively, and the duct aspect ratio. This is achieved by means of using a new transversal length scale, the square root of cross-sectional area, rather than the hydraulic diameter. Additional definitions more appropriate to single fluid devices such as heat sinks are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.