Abstract
Using classical molecular dynamics simulations, we have studied thermal boundary conductance (TBC) between a single-walled carbon nanotube (SWNT) and surrounding Lennard-Jones (LJ) fluids. With an aim to identify a general model that expresses the TBC for various surrounding materials, TBC was calculated for three different surrounding LJ fluids, hydrogen, nitrogen, and argon in supercritical phase. The results show that the TBC between an SWNT and surrounding LJ fluid is approximately proportional to local density (ρL) formed on the outer surface of SWNT and energy parameter (ε) of LJ potential, and inverse proportional to mass (m) of surrounding LJ fluid. In addition, the influence of the molecular mass of fluid on TBC is far more than other inter-molecular potential parameters in realistic range of molecular parameters. Through these parametric studies, we obtained a phenomenological model of the TBC between an SWNT and surrounding LJ fluid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.