Abstract

The details of the special three-dimensional micro-nano scale ripples with a period of hundreds of microns on the surfaces of a Zr-based and a La-based metallic glass irradiated separately by single laser pulse are investigated. We use the small-amplitude capillary wave theory to unveil the ripple formation mechanism through considering each of the molten metallic glasses as an incompressible viscous fluid. A generalized model is presented to describe the special morphology, which fits the experimental result well. It is also revealed that the viscosity brings about the biggest effect on the monotone decreasing nature of the amplitude and the wavelength of the surface ripples. The greater the viscosity is, the shorter the amplitude and the wavelength are.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.