Abstract
A stochastic generalization of renormalization-group transformation for continuous-time random walk processes is proposed. The renormalization consists in replacing the jump events from a randomly sized cluster by a single renormalized (i.e., overall) jump. The clustering of the jumps, followed by the corresponding transformation of the interjump time intervals, yields a new class of coupled continuous-time random walks which, applied to modeling of relaxation, lead to the general power-law properties usually fitted with the empirical Havriliak-Negami function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.