Abstract
We give a combinatorial characterization of Fulton’s operational Chow cohomology groups of a complete, \mathbb{Q} -factorial, rational T -variety of complexity one in terms of so called generalized Minkowski weights in the contraction-free case. We also describe the intersection product with Cartier invariant divisors in terms of the combinatorial data. In particular this provides a new way of computing top intersection numbers of invariant Cartier divisors combinatorially.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.