Abstract

The Beckmann distribution is a general multipath fading model for the received radio signal in the presence of a large number of scatterers, which can thence be modeled as a complex Gaussian random variable where both the in-phase and quadrature components have arbitrary mean and variance. However, the complicated nature of this distribution has prevented its widespread use and relatively few analytical results have been reported for this otherwise useful fading model. In this paper, we derive a closed-form expression for the generalized moment-generating function (MGF) of the signal-to-noise ratio (SNR) of Beckmann fading, which permits to circumvent the inherent analytical complexity of this model. This is a new and useful result, as it is a key for evaluating several important performance metrics of different wireless communication systems and also permits to readily compute the moments of the output SNR. Thus, we obtain simple exact expressions for the energy detection performance in Beckmann fading channels, both in terms of the receiver operating characteristic (ROC) curve and of the area under ROC curve. We also analyze the outage probability in interference limited systems affected by Beckmann fading, as well as the outage probability of secrecy capacity in wiretap Beckmann fading channels. Monte Carlo simulations have been performed to validate the derived expressions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.