Abstract

The generality and usefulness ofM/G/C/C state dependent queueing models for modelling pedestrian traffic flows is explored in this paper. We demonstrate that the departure process and the reversed process of these generalizedM/G/C/C queues is a Poisson process and that the limiting distribution of the number of customers in the queue depends onG only through its mean. Consequently, the models developed in this paper are useful not only for the analysis of pedestrian traffic flows, but also for the design of the physical systems accommodating these flows. We demonstrate how theM/G/C/C state dependent model is incorporated into the modelling of large scale facilities where the blocking probabilities in the links of the network can be controlled. Finally, extensions of this work to queueing network applications where blocking cannot be controlled are also presented, and we examine an approximation technique based on the expansion method for incorporating theseM/G/C/C queues in series, merge, and splitting topologies of these networks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call