Abstract
The objective of the present study is to develop efficient estimation methods for the use of the GEV distribution for quantile estimation in the presence of nonstationarity. Parameter estimation in the nonstationary GEV model is generally done with the maximum likelihood estimation method (ML). In this work, we develop the generalized maximum likelihood estimation method (GML), in which covariates are incorporated into parameters. A simulation study is carried out to compare the performances of the GML and the ML methods in the case of the stationary GEV model (GEV0), the nonstationary case with a linear dependence of the location parameter on covariates (GEV1), the nonstationary case with a quadratic dependence on covariates (GEV2), and the nonstationary case with linear dependence in both location and scale parameters (GEV11). Simulation results show that the GLM method performs better than the ML method for all studied cases. The nonstationary GEV model is also applied to a case study to illustrate its potential. The case study deals with the annual maximum precipitation at the Randsburg station in California, and the covariate process is taken to be the Southern Index Oscillation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.