Abstract
Sandpile models with conserved number of particles (also called fixed energy sandpiles) may undergo phase transitions between active and absorbing states. We generalize the Manna sandpile model with fixed number of particles, introducing a parameter -1 < lambda < 1 related to the toppling of particles from active sites to its first neighbors. In particular, we discuss a model with height restrictions, allowing for at most two particles on a site. Sites with double occupancy are active, and their particles may be transfered to first neighbor sites, if the height restriction do allow the change. For lambda = 0 each one of the two particles is independently assigned to one of the two first neighbors and the original stochastic sandpile model is recovered. For lambda = 1 exactly one particle will be placed on each first neighbor and thus a deterministic (BTW) sandpile model is obtained. When lambda = -1 two particles are moved to one of the first neighbors, and this implies that the density of active sites is conserved in the evolution of the system, and no phase transition is observed. Through simulations of the stationary state, we estimate the critical density of particles and the critical exponents as functions of lambda.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.