Abstract

Mission- and safety-critical circuits and systems employ redundancy in their designs to overcome any faults or failures of constituent circuits and systems during the normal operation. In this aspect, the N-modular redundancy (NMR) is widely used. An NMR system is comprised of N identical systems, the corresponding outputs of which are majority voted to generate the system outputs. To perform majority voting, a majority voter is required, and the sizes of majority voters tend to vary depending on an NMR system. Majority voters corresponding to NMR systems are physically realized by enumerating the majority input clauses corresponding to an NMR system and then synthesizing the majority logic equation. The issue is that the number of majority input clauses corresponding to an NMR system is governed by a mathematical combination, the complexity of which increases substantially with increases in the level of redundancy. In this context, the design of a majority voter of any size corresponding to an NMR specification based on a new, generalized design approach is described. The proposed approach is inherently hierarchical and progressive since any NMR majority voter can be constructed from an (N − 2)MR majority voter along with additional logic corresponding to the two extra inputs. Further, the proposed approach paves the way for simultaneous production of the NMR system outputs corresponding to different degrees of redundancy, which is not intrinsic to the existing methods. This feature is additionally useful for any sharing of common logic with diverse degrees of redundancy in appropriate portions of an NMR implementation.

Highlights

  • Mission- and safety-critical circuits and systems that are used in many real-world applications such as space, aerospace, defense, nuclear power plants, electric power systems, industrial control and automation, banking and finance etc., usually employ redundancy in their designs to embed a specific degree of fault tolerance to withstand arbitrary fault(s) or failure(s) of the constituent circuit(s) or system(s) when they might occur [1,2]

  • The example 5MR, 7MR and 9MR systems were implemented by incorporating different types majority voters viz. MUX-based, direct synthesis, and the proposed designs

  • Example N-modular redundancy (NMR) system implementations comprising the directly synthesized voters are considered for comparison

Read more

Summary

Introduction

Mission- and safety-critical circuits and systems that are used in many real-world applications such as space, aerospace, defense, nuclear power plants, electric power systems, industrial control and automation, banking and finance etc., usually employ redundancy in their designs to embed a specific degree of fault tolerance to withstand arbitrary fault(s) or failure(s) of the constituent circuit(s) or system(s) when they might occur [1,2]. In this context, the NMR scheme is well known and widely used [3,4]. The number of (majority) voters bePEER usedREVIEW in an NMR system would depend on the number of outputs produced

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call